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ABSTRACT

Exploring the interactions between radiofrequency (RF) radiation and biological systems
is essential for developing RF-based non-lethal stunning/immobilizing weaponry. To this end a
research effort was initiated to identify RE parameters potentially capable of selectively altering
exocytosis, the process underlying neurotransmitter release and hence nervous system
functioning. Major accomplishments included 1) designing, setting up, testing, characterizing
and optimizing a waveguide-based RF exposure system for assessing effects on exocytosis, using
neurosecretory adrenal chromaffin cells as an in vitro model, and 2) performing experiments that
lead to the novel observation of enhanced neurosecretion in response to modulated RF fields in
the 0.75 - 0.85 GHz frequency range. The research has been presented at four international
meetings, two local research conferences, and has culminated in one peer-reviewed publication,
a manuscript in preparation and a Master's thesis. That aspect of our work specifically utilizing
state-of-the art FDTD software has been featured on the website of Remcom. Inc. Personnel
involved in the project, which included a neurobiologist and an electrical engineer as principal

Sinvestigators, an associate engineer and two research assistants, provided a unique
interdisciplinary research experience for both graduate and undergraduate students. The research
has been transitioned into the DoD EPSCoR program.
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SUMMARY

Objective:
To define radiofrequency (RF) parameters that produce non-thermal effects on catecholamine
release, using bovine adrenal chromaffin cells as the in vitro model system and a cell perfusion
system that allows us to monitor catecholamine release during RF exposure.

Accomplishments:
1. The design, set-up and testing of a waveguide-based RF exposure system for on-line

monitoring of basal and stimulated catecholamine release from adrenal medullary
chromaffin cells during RF exposures in the 0.75-1 GHz frequency range was completed.
This included: 1) optimizing a cell perfusion apparatus for monitoring catecholamine
release via electrochemical detection during RF exposure; 2) carrying out a detailed
characterization of the RF exposure system using Finite-Difference Time-Domain (FDTD)
numerical modeling, and optimizing the RF exposure system as dictated by the modeling
results; 3) assembling a RF-generating system that would be capable of producing
continuous wave, modulated and pulsed RF fields); 4) computer automation of all RF
parameter protocols; 5) computer automation as well as measuring, data-logging and
display of both temperature within the cell-perfusion apparatus and electrochemical output;
6) designing and optimizing a temperature feedback control system to maintain the cells at
a constant temperature during RF exposure.

2. A series of experiments were carried out in a waveguide that was either terminated in a
short or terminated in a matched load. These experiments spanned the 0.75 - 1 GHz
frequency range and included continuous wave, amplitude modulated and pulse modulated
RF fields for the exposures.

New Findings:
The primary finding of our experiments is an apparent increase in nicotinic receptor-stimulated
catecholamine release in the presence of 20 Hz amplitude-modulated as well as pulsed RF fields
in the 750 - 850 MHz frequency range. Gross heating does not appear to be the mechanism
underlying the effect. These data are being prepared for publication.

Publications:
Hagan, T., Chatterjee, I., McPherson, D. and Craviso, G.L. "A novel waveguide-based
radiofrequency/microwave exposure system for studying non-thermal effects on
neurotransmitter release - Finite-Difference Time-Domain modeling". IEEE Transactions
on Plasma Science 32: 1668-1676, 2004.

Thesis:
Todd Hagan, completed his M.S. in Electrical Engineering at the University of Nevada,
Reno in May 2005; his thesis is titled: "Finite-Difference Time-Domain modeling of a
waveguide-based radiofrequency exposure system for studying non-thermal effects on
catecholamine release from chromaffin cells". Todd is continuing to work toward a Ph.D.
in Electrical Engineering.



Interactions/Transitions:
a) Presentations

i) Oral Presentations:
Hagan, T., Chatterjee, I., McPherson, D. and Craviso, G.L. "Finite-Difference Time-
Domain modeling of a waveguide-based radiofrequency exposure system for studying non-
thermal effects on catecholamine release from chromaffin cells". 3rd International
Symposium on Nonthermal Medical/Biological Treatments using Electromagnetic Fields
and Ionized Gases (ElectroMed 2003), San Antonio, TX, June 2003.

Craviso, G.L., Brouse, D., Hagan, T., McPherson, D. and Chatterjee, I. "Effect of
radiofrequency electromagnetic fields on catecholamine release from cultured bovine
adrenal chromaffin cells". Selected presentation at the "Hot Topics" session of the Gordon
Research Conference on Bioelectrochemistry, New London, CT, July 2004.

ii) Poster Presentations
National/International:
Hassan, N., Chatterjee, I., Publicover, N.G., and Craviso, G.L. "A combined experimental
and computational analysis of membrane potential variation in excitable cells in response to
DC electric fields"at the CEIDP/IEEE meeting in Cancun, Mexico in October, 2002.

Craviso, G.L., Brouse, D., Hagan, T., McPherson, D. and Chatterjee, I. "Effect of
radiofrequency electromagnetic fields on catecholamine release from cultured bovine
adrenal chromaffin cells ". Gordon Research Conference on Bioelectrochemistry, New
London, CT, July 2004.

Craviso, G.L., Brouse D., Hagan, T., McPherson, D. and Chatterjee, I. "Investigations
into non-thermal radiofrequency effects on the release of catecholamines from adrenal
chromaffin cells". 4 rd International Symposium on Nonthermal Medical/Biological
Treatments using Electromagnetic Fields and Ionized Gases (ElectroMed 2005), Portland,
OR, May 2005.

Local:
Dipti Bhakta. "Optimizing and Characterizing an On-line Monitoring System to Measure
Catecholamine Release from Bovine Adrenal Chromaffin cells during Radio-frequency
(RF) Field Exposure", presented to the University of Nevada research community at the
Desert Research Institute, Reno, NV August 8, 2002.

Chaithra Prasad. "Quantification of catecholamine levels in cultured bovine adrenal
chromaffin cells", presented to the University of Nevada, Reno, Biochemistry Research
program at the School of Medicine, Reno, NV, May 4, 2005.

b) Consultative and advisory functions: None
c) Transitions - DoD EPSCoR program, Award No. F49620-03-1-0262

New Discoveries, inventions or patent disclosures: None
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Honors/Awards: Hagan et al., 2004, is featured on the website for Remcom, Inc., the company
that developed the XFDTD software package used in our numerical modeling studies.

Personnel involved in the project
Gale L. Craviso, Ph.D., Associate Professor of Pharmacology - Principal Investigator
Indira Chatterjee, Ph.D., Professor of Electrical Engineering - Co-Principal Investigator
Dana McPherson, Associate Engineer, Dept. of Electrical Engineering
Mike Trakas, Research Assistant
David Brouse, Research Assistant
Todd Hagan, M.S. graduate student in Electrical Engineering
Dipti Bhakta, undergraduate junior student in Mechanical Engineering
Chaithra Prasad, undergraduate senior student in Biochemistry

COMPREHENSIVE TECHNICAL SUMMARY

Rationale

The United States Department of Defense is one of the world's largest developers and
users of RF-emitting systems for radar, communication and anti-electronic weaponry purposes.
However, the use of RF radiation as a non-lethal weapon per se has not yet been realized, most
likely because the effects of exposure of biological systems to RF fields at levels that do not
produce thermal effects are largely unknown. The overall objective of the research funded by
this grant was to begin laying the foundation upon which RF technology can be developed that
would have an application for non-lethal weaponry purposes, such as stunning/immobilizing the
enemy. To accomplish this goal, we initiated a carefully designed and controlled investigation of
the RF exposure parameters that can alter exocytosis, the process underlying neurotransmitter
release. All experiments were carried out using a well-characterized model for studying
exocytosis, isolated adrenal medullary chromaffin cells. These cells synthesize, store and release
the catecholamines epinephrine and norepinephrine.

Experimental Procedure

1. RF Exposure System - Design and Construction
Because the identification of a true biological outcome, i.e., an effect on catecholamine

release, requires uniform RF fields and known specific absorption rates (SAR), this necessitated
our designing, constructing, characterizing and optimizing an RF exposure system that allows
maximum flexibility in choosing the most common RF exposure parameters (e.g., frequency,
modulation schemes, pulsing schemes, etc.) for experiments as well as permits optimal handling
of cell samples under the constraints and limitations imposed by the biological experiment. In
our particular case, the goal was on-line measurement of catecholamine release by
electrochemical detection from perfused chromaffin cells during RF exposure. A waveguide-
based exposure system was determined as being the most suitable one for our experimental
needs.

A schematic diagram of the overall experimental setup is shown in Figure 1.
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Figure 1. Chromaffin cells are loaded onto a GF/C
Wa egi ldR glass fiber filter placed within a plastic filter holder and

Hetin• Coll • Fl continuously superfused with temperature-controlled
/e V'1[jme t(36.5°C) balanced salt solution (BSS). Part of the

P elfu rs io n P u r mp % VV qle it c e lls

"lutions -effluent flows into an electrochemical detector (ECD)
that measures on-line in the amperometric mode the
amount of catecholamine released; the remaining
effluent goes to a fraction collector for quantification of

.. .epinephrine and norepinephrine by high performance
. liquid chromatography. A computer-interfaced valve

S----switches to a drug-containing BSS for stimulating
ucatecholamine release with the nicotinic receptor

agonist, dimethylphenylpiperazinium (DMPP). The cell
perfusion apparatus is placed inside a waveguide for RF
exposure.

Figure 2 below is a photograph of the actual cell perfusion system within the waveguide.

Figure 2. A standard WR 975 waveguide is used for exposing the cells to RF
fields in the 0.75 - 1 GHz frequency. It is constructed out of aluminum and has
undergone a chromate conversion process to prevent corrosion. It is equipped
with several rectangular non-radiating slots (2.54 cm x 0.95 cm) at the top,
bottom, and sides through which perfusion tubing and temperature probes gain
access. Fluoroptic temperature probes continuously monitor the temperature of
the BSS entering and exiting the filter holder and a temperature feedback system
controls the flow of forced air blowing onto the BSS inlet tubing to maintain the
temperature of the BSS superfusing the cells at 36.5°C during RF exposure. A
third fluoroptic probe continuously monitors temperature inside the waveguide.

Experiments were carried out with the cells placed at the location of a standing wave
magnetic or electric field maximum in the waveguide terminated by a short circuit as well as
with the cells exposed to a traveling wave RF field when the waveguide was terminated in a
matched load. Because effects of RF exposure on catecholamine release to date have only been
observed using the waveguide terminated in a matched load (see Experimental Results section), a
schematic diagram of this configuration only is presented (Figure 3).

Figure 3. The signal generator (Agilent 8648B) generates
Matched the RF signal that is amplified (Instruments for Industry

......... Syl 300 Solid State Amplifier) to the required input
Power Npower. A circulator (UTE Microwave Inc. CT-1541N) is

Amplifer ia inserted in the circuit so that the reflected power is directed

RIgF Sigal to a 50 n RF coaxial termination (Bird 300-ST). The
G tr rpower into the waveguide system is monitored by a power
- I 5,°lh, -meter (Agilent E4416A) with a power sensor (Agilent

I.....E9325A), and coupled into the exposed waveguide via a
coax-waveguide adapter.

A photograph of the actual RF exposure/experimental setup is shown in Figure 4.
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Figure 4. All equipment has been interfaced
with a computer using programs written in
LabView. In addition, all RF parameter
protocols are fully automated. Also, the
experimental setup is computer automated for
measuring, data-logging and display of
temperature within the cell-perfusion apparatus
as well as the ECD output.

2. RF Exposure System -Characterization and Optimization

The shorted waveguide RF exposure system was characterized and optimized using the
FDTD numerical modeling technique. Complete details are given in Hagan et al., 2004. A
detailed model of the cell perfusion apparatus inside the waveguide was constructed using the the
CAD software SolidWorks which was then imported into the commercially available FDTD
software package XFDTD (BioPro Version 5.3, Remcom, Inc., State College, PA). The model
took into account the precise geometries and dielectric properties of each component of the
exposure system. Calculations of the electromagnetic fields and the distribution of the SAR in
the region where the chromaffin cells are located were thus obtained and simulations allowed us
to design exposure protocols that provided the most homogeneous SAR (typically, a standard
deviation of inhomogeneity of less than ± 30% is acceptable) over the region containing the
cells.

The matched waveguide exposure system has been similarly modeled and figures
provided in the Appendix show the distribution of the SAR and electric field, respectively, at the
location of the cells exposed to 750 MHz fields.

Experimental Results

Initial experiments used a shorted waveguide where chromaffin cells were positioned in
the electric field or magnetic field maximum of a standing wave at specific frequencies in the
0.75-1 GHz frequency range. None of the experiments showed effects on either basal or
nicotinic receptor-stimulated catecholamine release during RF exposure, perhaps because the
magnitude of the electromagnetic fields was not sufficiently high enough to elicit a response. To
give us greater flexibility in exposure paradigms during a single experiment (e.g., the ability to
expose cells to a multitude of frequencies), we switched to a matched waveguide, which meant
that the cells would be exposed to traveling waves. At the same time, We substantially modified
the cooling system for controlling and maintaining temperature within the physiological range of
36'-37C' so that the amount of power delivered into the waveguide could be increased without
causing heating of the cells.
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Using the matched waveguide exposure setup, an increase in nicotinic receptor-
stimulated catecholamine release was observed during RF exposure of the cells to either pulsed
or amplitude-modulated RF fields in the 750 - 850 MHz frequency range. Data from a
representative experiment are shown in the Appendix. (Also provided in the Appendix is a table
summarizing all the RF exposure parameters that have resulted in apparent effects on nicotinic
receptor-stimulation of catecholamine release). No effects have been observed to date when the
RF field was applied as a continuous wave or when higher frequencies were employed (0.85 - 1
GHz).

The effects on stimulated catecholamine release observed so far do not appear to be due
to gross heating. First, there are no noticeable increases in temperature during the exposures that
could account for the effects. Second, data from preliminary experiments indicate that the
changes in nicotinic receptor-stimulated catecholamine release observed during RF exposure are
not consistent with how increases in temperature alter nicotinic receptor- stimulated
catecholamine release. That is, imposed temperature changes of up to 2°C failed to mimic the
effects of RF exposure on nicotinic receptor-stimulated catecholamine release (see Appendix).

Ongoing work/future directions

Because the research funded by this grant has been transitioned into the DoD EPSCoR
program, we are actively continuing experiments to further evaluate effects of RF fields on
catecholamine release, employing a wider frequency range, additional pulsing paradigms and RF
exposure protocols. Moreover, we are trying to develop strategies for delivering more power
during RF exposures without causing gross heating. This will enable us to observe more robust
and consistent effects. Finally, in an attempt to differentiate better between thermal and non-
thermal effects of RF exposure on catecholamine release, we have begun devising a way to carry
out a detailed investigation of how imposing rapid temperature changes on chromaffin cells
affects catecholamine release.

APPENDIX

RF Exposure

Pu•ed lOO • o,-10 • o• Representative experiment showing that RF exposure at
775 MHz and 850 MHz increases catecholamine release

So •o •, stimulated by the nicotinic receptor agonist DM PP. (Top)
S,5 • ECD profile showing stimulated catecholamine release

o. I '• I • I .... I ..... ! ,o • with time in response to successive 30 second pulses of 5
SInlet

- .,o • IxM DMPP. In the absence of RF exposure the amount
released typically declines with each successive DMPP
pulse. In the experiment shown here, two initial responses
to DMPP were obtained and the cells then exposed to

•- ,•o pulsed RF fields at 4 discrete frequencies (20 minute
,•o " ...... exposures). (Bottom) Area under the ECD curve for

...... • DMPP-stimulated catecholamine release. Inlet and Outlet

I refer to the temperature of the BSS entering and exiting the

S•i i•: • 1•:': filter holder.

o
14:55:oo 15:•:oo 16:15:t• 16•:oo

Real Time



SUMMARY OF THE RF EXPOSURE CONDITIONS IDENTIFIED TO DATE IN
WHICH AN INCREASED RESPONSE TO DMPP HAS BEEN OBSERVED

Frequency Type of Modulation Avg. Power Peak Power SAR over 50% of
(GHz) (W) (W) the GF/C filter

(W/kg)

0.750 AM (20 Hz square wave) 1.5 5 - 6

0.775 Pulse keying (100 gs on, 2.27 2.5 7 - 10 (0.775)
and 10 ps off, 9.1 kHz PRF) 7-9(0.850)

0.850

0.750 Pulse keying (20 ns on, 33.7 - 81.3 398 - 813 1300 - 1800 (0.75)
and 215-180 ns off, 4.24 - 5 2200 - 3100 (0.8)

0.800 MHz PRF)

0.750 Pulse keying (20 ns on, 61.4 724 2000 - 3000
202 ns off, 4.5 MHz PRF)

AM: amplitude modulation
PRF: pulse repetition frequency

Representative experiment showing that
- :• DMPP-stimulated catecholamine release9 L°: does not increase when temperature rises.S0. 4

3Temperature was elevated both by
-2 .. conventional heating (increasing the

. ..... -2 temperature of the BSS) or more rapidly by
applying a 750 MHz continuous wave RF
field at a power level that causes an overt rise
in temperature of the BSS superfusing the

H.H cells.

15:44.= 1i:10M00 16:44:44 17:100 17:4.:Q 0

Real Time
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:60
...............

• 
I4

Magnitude and distribution of the SAR (W/kg) on the glass fiber filter computed by XFDTD at 750 MHz
for the matched waveguide. Contour plot (left) and surface plot (right).

4•,3oSurface plot of the magnitude

46,,0

and distribution of the electricSI• field (Vim) on the glass fiberS•*.•filter computed by XFDTD at 750
•t•.• wMHz for the matched waveguide.
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Abstract

The scope of this thesis is two-fold. (1) To optimize the waveguide exposure

system incorporating a cell perfusion apparatus (CPA) so as to provide maximum

homogeneity of the electromagnetic fields (EMF) and specific absorption rate (SAR) in

the region containing the biological cells. (2) To provide a detailed characterization of the

EMF and SAR at the location of the cells. These two goals were achieved via numerical

FDTD modeling. Macroscopic modeling was performed Where the minimum Yee cell

size used in the FDTD model was a fraction of a millimeter, representing accurately the

waveguide and CPA physical structures. Preliminary microscopic modeling was also

accomplished where the minimum Yee cell size was on the order of 0.1 gm, making it

possible to take into account the basic morphological features of bovine adrenal medullar

chromaffin cells used in the RF/MW exposure experiments.

The FDTD macroscopic modeling determined that the EMF and SAR spatial

distribution, and hence the degree of homogeneity, across the location of the cells was

dependent on the dielectric properties of the glass fiber filter (GFF) soaked with balanced

salt solution (BSS) on which the cells were loaded, the geometry of the center BSS flow

channel, the spatial distribution of cell loading onto the GFF, and how the EMF coupled

(tangential or perpendicular) into the GFF. The direction of the incident electric field

intensity (E) must be tangential to the top and bottom of the GFF for maximum coupling

to the cells. If the waveguide is terminated by a short with the CPA at the maxima of the

resulting standing wave or if the waveguide was terminated by a matched load, the



degree of homogeneity was independent of input power and frequency of the RF/MW

signal supplied to the exposure system. Also, with greater power, the amplitude of E was

larger across the location of cells, but retained the same spatial distribution.

Because the cell distribution is known after an actual exposure system by staining

the GFF with the dye neutral red and the inputs into the FDTD model are the same RF

parameters (i.e., power, modulation, frequency, etc.) as used in the experiment, the

simulated EMF (or SAR) and cell spatial distributions could be overlaid to assist in

interpreting the experimental results. Furthermore, with this knowledge, steps were taken

to modify the CPA, e.g., tapering of the central BSS flow channel, to improve both the

degree of field homogeneity and the efficiency of EMF coupling across the location the

cells.

Preliminary FDTD microscopic modeling of a single cell and a linear cluster of

three cells showed that the location of the maxima of the/E field inside and surrounding

the cell were always at the plasma membrane. These maxima are at both the top and

bottom of the cell with respect to the direction of the incident E field, which is consistent

with Raleigh scattering from a dielectric sphere. The spatial locations of the maxima are

independent of amplitude and frequency. Very close proximity of cells, as in a cluster,

resulted in nearly doubling the magnitude of E in the region between the cells.

Subsequent spectral analysis of the microscopic simulations, however, indicated

that although the greatest maxima occurred at the cell membrane for an incident Gaussian

pulse waveform, different regions of a cell or cluster will couple different frequencies of

the incident EMF with different efficiencies. In the frequency domain, the energy at a

particular point in the cell will maximize at a particular frequency. The cell membrane
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couples higher frequencies while regions away from the membrane and well within the

cytoplasm couples low frequencies. This suggests that different regions of a cell could be

targeted for greater exposure by simply changing the frequency, pulse width, or EMF

incident waveform.
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